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In this work, the Calogero-Sutherland model with twisted boundary condition is studied. The ground state
wave functions, the ground state energies, and the full energy spectrum are provided in details.
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Exact solutions have provided us with important nonper-
turbative insights in dealing with systems of strong correla-
tions. While there are very few exactly solvable systems
available, the ones that exist have yielded many interesting
results. Notable examples include electron systems withd
function interactions@1#, the Hubbard model@2#, the Kondo
impurity spin system with linear conduction electron system
@3#, the Luttinger model@4# , and the Anderson model@5#.
These models have all played important roles in our under-
standing of physics in condensed matter theory. Ever since
Haldane and Shastry independently introduced the exactly
solvable spin chain of 1/r 2 exchange interaction@6,7#, there
has been considerable activity in studying the variants of the
Haldane-Shastry spin chain doped with holes i.e., thet-J
models of long range hopping and exchange@8,9,11–16,18–
23# It is interesting that the chiral Hubbard model@10#,
which at half-filling and in the limit of large but finite on-site
energy reduces to the Haldane-Shastry spin chain, is also
exactly solvable for any filling numbers and any on-site en-
ergy. In the following, we will study in details the Calogero-
Sutherland~CS! model with twisted boundary condition. The
ground state wave functions, the ground state energies, and
the full energy spectrum are provided. Since one has to deal
with the cases of bosons and fermions with twisted boundary
condition, the full discussion is divided into several sections
as below.

I. THE GROUND STATES

A. Spinless boson gas

We first consider the CS model of boson gas defined on a
closed ring of lengthL. In the presence of a flux tube that
threads through the ring, the eigenenergy problem can be
formulated as follows. Suppose that there areN spinless
bosons moving on the ring, 0<xi<L; i51,2, . . . ,N. Then
the eigenvalue problem is

HCSC̃~x1s1 , . . . ,xis i , . . . ,xNsN!

5EC̃~x1s1 , . . . ,xis i , . . . ,xNsN!. ~1!

Here the Calogero-Sutherland HamiltonianHCS takes the
usual form

HCS52
1

2(i51

N
]2

]xi
2

1(
i, j

l ~ l11!Y FS Lp D 2sin2S p~xi2xj !

L D G , ~2!

where we assumel.0. The wave function obeys the twisted
boundary condition

C̃„x1 , . . . ,~xi1L !, . . . ,xN…5eifC̃~x1 , . . . ,xi , . . . ,xN!.
~3!

Obviously, the system is invariant under the translational op-
erationf→f12p. Therefore we only need to consider the
region2p<f<p. For the bosons,

C̃~x1 , . . . ,xi , . . . ,xj , . . . !

5C̃~x1 , . . . ,xj , . . . ,xi , . . . ,xN!, ~4!

i.e., the wave functionC̃ is symmetric under exchange of
any two particles.

Let us define the region R as follows:
$R:0<xi<L; i51,2, . . . ,N%. The subregion of the fullR is
denoted byR1 :$R1 :0<x1<x2<•••<xN<L%. The wave
function inside the region R1 is denoted by
C̃1(x1 ,x2 , . . . ,xN). The wave function in other subregions
can be obtained by using the symmetry property of bosons
Eq. ~4!. The twisted boundary condition Eq.~3! is translated
to be

C̃1~x2 ,x3 , . . . ,xN ,L !5eifC̃1~0,x2 ,x3 , . . . ,xN!. ~5!

The ground state of the spinless bosons should take the fol-
lowing form:

C̃1
g~x1 ,x2 , . . . ,xN!

5expS ifL (
j51

N

xj D )
1< i, j<N

UsinS p~xi2xj !

L D U l11

.

~6!

One may check that the wave function satisfies the twisted
boundary condition. This wave function is also an eigenstate
of the Hamiltonian. Since the wave function has no zeros in
the regionR1, it is the ground state. The eigenenergy of the
state can be found to be
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Eg~f!5
1

2
NS f

L D 21 1

6
~ l11!2p2N~N221!/L2. ~7!

Without the flux, the results reduce to those of Sutherland’s
@17#. In the full spaceR, the ground state wave function
C̃g takes the simple form

C̃g~x1 ,x2 , . . . ,xN!

5expS ifL (
j51

N

xj D )
1< i, j<N

UsinS p~xi2xj !

L D U l11

,

~8!

which is symmetric under the exchange of two particles, and
which satisfies the twisted boundary condition Eq.~3!. In the
presence of the flux, there is a persistent current in the ring.
The persistent current is I (f)52@]Eg(f)/]f#
52(N/L2)f.

B. Spinless fermion gas„odd N…

In this section, we discuss the spinless fermion model
described by the CS model in the presence of a magnetic flux
tube. The eigenvalue problem is formulated as follows:

HCSC̃~x1s1 , . . . ,xis i , . . . ,xNsN!

5EC̃~x1s1 , . . . ,xis i , . . . ,xNsN!, ~9!

with the Calogero-Sutherland HamiltonianHCS as before

HCS52
1

2(i51

N
]2

]xi
2

1(
i, j

l ~ l11!Y FS Lp D 2sin2S p~xi2xj !

L D G , ~10!

where the coupling constantl.0. The wave function satis-
fies the twisted boundary condition

C̃~x1 , . . . ,~xi1L !, . . . ,xN!5eifC̃~x1 , . . . ,xi , . . . ,xN!.
~11!

In this case, since the system is made of spinless fermions,
the wave function is antisymmetric when exchanging two
particles,

C̃~x1 , . . . ,xi , . . . ,xj , . . . !

5~21!C̃~x1 , . . . ,xj , . . . ,xi , . . . ,xN!. ~12!

As before, we define the full regionR to be
$R:0<xi<L; i51,2, . . . ,N%. The subregion R1 is
$R1 :0<x1<x2<•••<xN<L%. The twisted boundary condi-
tion of the wave functionC̃(x1 ,x2 , . . . ,xN) defined inR is
translated to a condition satisfied by the wave function
C̃1(x1 ,x2 , . . . ,xN) defined in the regionR1 as below

C̃1~x2 ,x3 , . . . ,xN ,L !

5~21!~N21!eifC̃1~0,x2 ,x3 , . . . ,xN!. ~13!

Given C̃1 insideR1, the wave functions in other subregions
of R can be obtained using the antisymmetry of the fermi-
onic statistics. SinceN is odd, the prefactor (21)(N21) dis-
appears. We propose the following wave function as the
ground state: insideR1, the ground state takes the Jastrow
form

C̃1
g~x1 ,x2 , . . . ,xN!

5expS ifL (
j51

N

xj D )
1< i, j<N

UsinS p~xi2xj !

L D U l11

.

~14!

One may compute the corresponding eigenvalue of this wave
function. It is found that

Eg~f!5
1

2
NS f

L D 21 1

6
~ l11!2p2N~N221!/L2. ~15!

In the presence of the magnetic flux, there is a persistent
current in the system. The persistent current is
I (f)52@]Eg(f)/]f#52(N/L2)f. Without the flux, our
ground state wave function reduces to that of Sutherland’s.
In the full regionR, the ground state wave functionC̃g can
be written in a compact way

C̃g~x1 ,x2 , . . . ,xN!5expS ifL (
j51

N

xj D )
1< i, j<N

3UsinS p~xi2xj !

L D U lsinS p~xi2xj !

L D ,
~16!

which is antisymmetric when exchanging two fermions, and
which also satisfies the twisted boundary condition Eq.~13!.

C. Spinless fermion gas„evenN…

The eigenvalue problem is formulated as before. How-
ever, great care should be taken of the boundary condition
Eq. ~13!. First, let us consider the situation without flux,
f50, and we impose the periodic boundary condition~PBC!
on the wave function

C̃„x1 , . . . ,~xi1L !, . . . ,xN…5C̃~x1 , . . . ,xi , . . . ,xN!.
~17!

This PBC is translated to be a boundary condition forC̃1 as
below

C̃1~x2 ,x3 , . . . ,xN ,L !5~21!C̃1~0,x2 ,x3 , . . . ,xN!.
~18!

With this in mind, the ground state for the system inside the
regionR1 should take the following form:
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C̃1
g~x1 ,x2 ,..., xN!5expS 6 ip

L (
j51

N

xj D
3 )

1< i, j<N
UsinS p~xi2xj !

L D U l11

.

~19!

We can compute the eigenenergy of this wave function. The
ground state energy is found to be

Eg5
1

2
NS p

L D 21 1

6
~ l11!2p2N~N221!/L2. ~20!

This energy is different from the bosonic case, as well as
different from the fermionic case when the total number of
particles is odd.

Now, let us consider the situation when there is nonzero
flux. Consider the case where 0<f<p. The twisted bound-
ary condition Eq.~13! for the wave functionC̃1 is satisfied
by the following Jastrow product:

C̃1
g~x1 ,x2 , . . . ,xN!5expS i ~f2p!

L (
j51

N

xj D
3 )

1< i, j<N
UsinS p~xi2xj !

L D U l11

.

~21!

This wave function is the ground state of the system, with
the ground state energy given by

Eg~f!5
1

2
NS p2f

L D 21 1

6
~ l11!2p2N~N221!/L2.

~22!

The persistent current of the system is found to be
I (f)52]E(f)]f52 N/L2 (f2p)>0. If the system has
a flux 2p<f<0, the ground state wave function is found
to be

C̃1
g~x1 ,x2 , . . . ,xN!5expS i ~f1p!

L (
j51

N

xj D
3 )

1< i, j<N
UsinS p~xi2xj !

L D U l11

.

~23!

The corresponding eigenenergy is given by

Eg~f!5
1

2
NS p1f

L D 21 1

6
~ l11!2p2N~N221!/L2.

~24!

The persistent current isI (f)52 N/L2 (f1p)<0.
In the full spaceR as defined before, the ground state

wave functionC̃g can be written in a compact way. For
0<f<p, inside the full regionR, the ground state wave
function is

C̃g~x1 ,x2 , . . . ,xN!5expS i ~f2p!

L (
j51

N

xj D
3 )

1< i, j<N
UsinS p~xi2xj !

L D U l
3sinS p~xi2xj !

L D . ~25!

While for 2p<f<0, insideR, one has

C̃g~x1 ,x2 , . . . ,xN!

5expS i ~f1p!

L (
j51

N

xj D )
1< i, j<N

UsinS p~xi2xj !

L D U l
3sinS p~xi2xj !

L D . ~26!

In the next section, we will provide the full energy spectrum
for the CS model under twisted boundary condition, follow-
ing a similar approach of Sutherland’s for zero flux case
@17#.

II. EXCITATION SPECTRUM

A. Spinless boson gas

Following the idea of Sutherland@17#, one can write the
wave function as a product of the Jastrow part and the part of
plane waves. Keeping the plane waves due to the twisted
boundary condition we can find the energy spectrum of the
spinless boson gas given by

E5
p2

6
~ l11!2N~N221!/L21

1

2
~2p/L !2e, ~27!

where the function e is given by e5( j51
N (nj1@f/

2p#)21( l11)( i. j@ni2nj #. The quantum numbersnj are
nonnegative integers, which satisfy the conditionnj11>nj .
The quantum numbers do not have to be distinct from each
other. The ground state is obtained when allnj50.

B. Spinless fermions„odd N…

For the spinless fermion gas~odd N), one can also find
the excitation spectrum of the system under the twisted
boundary condition. The full energy spectrum takes the form

E5
p2

6
~ l11!2N~N221!/L21

1

2
~2p/L !2e, ~28!

where the function e is given by e5( j51
N (nj1@f/

2p#)21( l11)( i. j@ni2nj #. The quantum numbersnj are
non-negative integers, and one has the conditionnj11>nj .
The ground state is given when allni50.

C. Spinless fermions„evenN…

Finally, for the spinless fermion gas of evenN, we also
find the full energy spectrum taking the following form for
0<f<p:
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E5
p2

6
~ l11!2N~N221!/L21

1

2
~2p/L !2e, ~29!

where the function e is given by
e5( j51

N (nj1@(f2p)/2p#)21( l11)( i. j@ni2nj #. The
quantum numbersnj are non-negative integers that have the
condition nj11>nj . The ground state corresponds to all
ni50.

When the flux2p<f<0, the energy excitation is given
by

E5
p2

6
~ l11!2N~N221!/L21

1

2
~2p/L !2e, ~30!

where the function e is given by
e5( j51

N (nj1@(f1p)/2p#)21( l11)( i. j@ni2nj #. The
quantum numbersnj are non-negative integers, satisfying the

condition nj11>nj . The ground state is reached when all
ni50.

III. SUMMARY

In summary, we have discussed how the boundary condi-
tion affects the spinless CS model of long range interaction.
The ground state wave functions, the ground state energies,
the full energy spectrum are provided for both the fermionic
gas and the bosonic gas. The exact solutions indicate that the
parity effect for the persistent currents still hold for the fer-
mionic gas, in spite of the electron-electron correlation.
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